Pung Documentation

Bob Gregory

Nov 28, 2022

Contents

1 Punq
1.1
1.2
1.3

Index

Installation e e e e e e e e e
Quick Start e e e e e e e

API

W = =

CHAPTER 1

Pung

An unintrusive library for dependency injection in modern Python. Inspired by Fung, Punq is a dependency injection
library you can understand.

* No global state
* No decorators
* No weird syntax applied to arguments

* Small and simple code base with 100% test coverage and developer-friendly comments.

1.1 Installation

Pungq is available on the cheese shop.

’pip install pung

Documentation is available on Read the docs.

1.2 Quick Start

Punq avoids global state, so you must explicitly create a container in the entrypoint of your application:

import pung

container = pung.Container ()

Once you have a container, you can register your application’s dependencies. In the simplest case, we can register any
arbitrary object with some key:

https://codecov.io/gh/bobthemighty/punq
https://punq.readthedocs.io/en/latest/?badge=latest
https://github.com/jlyonsmith/Funq
https://pypi.org/project/punq/
http://punq.readthedocs.io/en/latest/

Punqg Documentation

’container.register("connectionistring", instance="postgresqgl://...") ‘

We can then request that object back from the container:

’conn_str = container.resolve ("connection_string") ‘

Usually, though, we want to register some object that implements a useful service.:

class ConfigReader:
def get_config(self):
pass

class EnvironmentConfigReader (ConfigReader) :
def get_config(self):
return ({
"logging": {
"level": os.env.get ("LOGGING_LEVEL", "debug")
}I
"greeting": os.env.get ("GREETING", "Hello world")

container.register (ConfigReader, EnvironmentConfigReader)

Now we can resolve the ConfigReader service, and receive a concrete implementation:

config = container.resolve (ConfigReader) .get_config()

If our application’s dependencies have their own dependencies, Punq will inject those, too:

class Greeter:
def greet (self):
pass

class ConsoleGreeter (Greeter) :
def _ _init__ (self, config_reader: ConfigReader):
self.config = config_reader.get_config()

def greet (self):

print (self.config['greeting'])

container.register (Greeter, ConsoleGreeter)
container.resolve (Greeter) .greet ()

If you just want to resolve an object without having any base class, that’s okay:

class Greeter:
def _ _init__ (self, config_reader: ConfigReader):
self.config = config_reader.get_config()

def greet (self):
print (self.config['greeting'])

container.register (Greeter)
container.resolve (Greeter) .greet ()

And if you need to have a singleton object for some reason, we can tell punq to register a specific instance of an object:

2 Chapter 1. Punq

Punqg Documentation

class FileWritin

def __ _init__ (self, path, greeting):
self.path = path
self.message = greeting
self.file = open(self.path, 'w'")

gGreeter:

def greet (self):
self.file.write(self.message)

one_true_greeter = FileWritingGreeter ("/tmp/greetings", "Hello world")
container.register (Greeter, instance=one_true_greeter)

You might not know all of your arguments at registration time, but you can provide them later:

container.register (Greeter, FileWritingGreeter)
greeter = container.resolve (Greeter, path="/tmp/foo", greeting="Hello world")

Conversely, you might want to provide arguments at registration time, without adding them to the container:

container.register (Greeter, FileWritingGreeter, path="/tmp/foo", greeting="Hello world

. u)

Fuller documentation is available on Read the docs.

Github workflows, nox configuration, and linting gratefully stolen from Hypermodern Python

1.3 API

class pung.Container
Provides dependency registration and resolution.

This is the main entrypoint of the Punq library. In normal scenarios users will only need to interact with this
class.

register (service, factory=<pungq._Empty
scope=<Scope.transient: 0>, **kwargs)
Register a dependency into the container.

object>, instance=<punq._Empty object>,

Each registration in Punq has a “service”, which is the key used for resolving dependencies, and either
an “instance” that implements the service or a “factory” that understands how to create an instance on
demand.

Examples

If we have an object that is expensive to construct, or that wraps a resouce that must not be shared, we
might choose to use a singleton instance.

>>> import sqglalchemy
>>> from pung import Container
>>> container = Container ()

>>> class DataAccessLayer:
pass

(continues on next page)

1.3. API 3

http://punq.readthedocs.io/en/latest/
https://github.com/cjolowicz/cookiecutter-hypermodern-python

Punqg Documentation

(continued from previous page)

>>> class SqglAlchemyDataAccessLayer (DataAccesslayer) :
def __ _init__ (self, engine: sglalchemy.engine.Engine) :
pass

>>> dal = SglAlchemyDataAccessLayer (sglalchemy.create_engine ("sqglite:///"))
>>> container.register (
DataAccesslayer,
instance=dal
)
<pung.Container object at 0Ox...>
>>> assert container.resolve (DataAccessLayer) is dal

If we need to register a dependency, but we don’t need to abstract it, we can register it as concrete.

>>> class FileReader:
def read (self):
Assorted legerdemain and rigmarole
pass

>>> container.register (FileReader)
<pung.Container object at Ox...>
>>> assert type (container.resolve (FileReader)) == FileReader

In this example, the EmailSender type is an abstract class and SmtpEmailSender is our concrete imple-
mentation.

>>> class EmailSender:
def send(self, msg):
pass

>>> class SmtpEmailSender (EmailSender):
def send(self, msg):
print ("Sending message via smtp")

>>> container.register (EmailSender, SmtpEmailSender)
<pung.Container object at Ox...>

>>> instance = container.resolve (EmailSender)

>>> instance.send ("beep")

Sending message via smtp

resolve_all (service, **kwargs)
Return all registrations for a given service.

Some patterns require us to use multiple implementations of an interface at the same time.

Examples

In this example, we want to use multiple Authenticator instances to check a request.

>>> class Authenticator:
def matches(self, req):
return False

(continues on next page)

4 Chapter 1. Punq

Punqg Documentation

(continued from previous page)

def authenticate(self, req):
return False

>>> class BasicAuthenticator (Authenticator) :
def matches(self, req):
head = reqg.headers.get ("Authorization™, "")
return head.startswith ("Basic ")

>>> class TokenAuthenticator (Authenticator) :
def matches(self, req):
head = reqg.headers.get ("Authorization", "")
return head.startswith ("Bearer ")

>>> def authenticate_request (container, req):
for authn in reqg.resolve_all (Authenticator):
if authn.matches (req) :
return authn.authenticate (req)

resolve (service_key, **kwargs)
Build an return an instance of a registered service.

instantiate (service_key, **kwargs)
Instantiate an unregistered service.

exception pung.MissingDependencyError
Raised when a service, or one of its dependencies, is not registered.

Examples

>>> import pung

>>> container = pung.Container ()
>>> container.resolve ("foo")
Traceback (most recent call last):

pung.MissingDependencyError: Failed to resolve implementation for foo

exception pung.InvalidRegistrationError
Raised when a registration would result in an unresolvable service.

exception pung.InvalidForwardReferenceError
Raised when a registered service has a forward reference that can’t be resolved.

Examples

In this example, we register a service with a string as a type annotation. When we try to inspect the constructor
for the service we fail with an InvalidForwardReferenceError

>>> from dataclasses import dataclass
>>> from punqg import Container
>>> @dataclass

class Client:

dep: 'Dependency'

>>> container = Container ()
>>> container.register (Client)
Traceback (most recent call last):

(continues on next page)

1.3. API 5

Punqg Documentation

(continued from previous page)

pung.InvalidForwardReferenceError: name 'Dependency' is not defined

This error can be resolved by first registering a type with the name ‘Dependency’ in the container.

>>> class Dependency:
pass

>>> container.register (Dependency)

<pung.Container object at Ox...>
>>> container.register (Client)
<pung.Container object at Ox...>

>>> container.resolve (Client)
Client (dep=<pung.Dependency object at 0x...>)

Alternatively, we can register a type using the literal key ‘Dependency’.

>>> class AlternativeDependency:

pass
>>> container = Container|()
>>> container.register ('Dependency', AlternativeDependency)
<pung.Container object at 0x...>
>>> container.register (Client)
<pung.Container object at Ox...>

>>> contailner.resolve (Client)
Client (dep=<pung.AlternativeDependency object at 0x...>)

6 Chapter 1. Punq

Index

C

Container (class in pung), 3

instantiate () (pung.Container method), 5
InvalidForwardReferenceError, 5
InvalidRegistrationError,5

M

MissingDependencyError, 5

R

register () (pung.Container method), 3
resolve () (pung.Container method), 5
resolve_all () (pung.Container method), 4

	Punq
	Installation
	Quick Start
	API

	Index

